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Departing from a system of two nonautonomous amplitude equations, demonstrating hyperbolic chaotic
dynamics, we construct a one-dimensional medium as an ensemble of such local elements introducing spatial
coupling via diffusion. When length of the medium is small, all spatial cells oscillate synchronously, repro-
ducing the local hyperbolic dynamics. This regime is characterized by a single positive Lyapunov exponent.
The hyperbolicity survives when the system gets larger in length so that the second Lyapunov exponent passes
zero and the oscillations become inhomogeneous in space. However, at a point where the third Lyapunov
exponent becomes positive, some bifurcation occur that results in violation of the hyperbolicity due to the
emergence of one-dimensional intersections of contracting and expanding tangent subspaces along trajectories
on the attractor. Further growth of the length results in the two-dimensional intersections of expanding and
contracting subspaces that we classify as a stronger type of the violation. Beyond the point of the hyperbolicity
loss, the system demonstrates an extensive spatiotemporal chaos typical for extended chaotic systems: when
the length of the system increases the Kaplan-Yorke dimension, the number of positive Lyapunov exponents
and the upper estimate for Kolmogorov-Sinai entropy grow linearly, while the Lyapunov spectrum tends to a
limiting curve.
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I. INTRODUCTION

One of the central concepts in mathematical theory of
dynamical systems relates to hyperbolic strange attractors.
Tangent space of each point of such an attractor splits into
expanding and contracting subspaces and this splitting is in-
variant. Dynamics on a hyperbolic attractor is structurally
stable, i.e., is insensible to variations of parameters. It mani-
fests strong stochastic properties and allows detailed theoret-
ical analysis �1,2�.

During the last 40 years, hyperbolic attractors were con-
sidered rather as idealized model of perfect chaos. Though
some artificial systems with hyperbolic attractors were
known, they were useless for practical applications because
of complicated construction. Recently, a realistic system was
suggested and implemented as an electronic device, dynam-
ics of which in stroboscopic description is associated with
the attractor of Smale-Williams type �3,4�. Attractor of this
system is hyperbolic as proven numerically by verification of
the cone criterion �5�. In paper �6�, the amplitude equation
for this system was studied and the hyperbolicity was also
proven by the method of cones. �Some other models based
on the same principle are considered in Refs. �7–10�.�

Traditionally, studies of hyperbolic dynamics are mostly
concentrated on low-dimensional systems. Many topics con-
cerning spatiotemporal chaos, though attracted a lot of inter-
est, remain open �11�. In this paper, we address a problem of
survival of hyperbolicity of a spatiotemporal system when
the length of the system grows. We consider a one-
dimensional �1D� extended system composed of local ele-

ments possessing a hyperbolic attractor that is based on the
amplitude equations from �6�. The spatial coupling is intro-
duced via diffusion. In fact, a system we study is a set of two
coupled nonautonomous Ginzburg-Landau equations of spe-
cial form.

We are aware of two numerical methods for reliable veri-
fication of hyperbolicity. The first one is the method based on
the cone criterion �5�, which employs directly the rigorous
theorem and, hence, looks preferable. Unfortunately, the
method is appropriate only for low-dimensional systems,
while its extension to systems of many degrees of freedom
seems to be abundantly sophisticated. The second method is
based on a recently suggested routine of computing of cova-
riant Lyapunov vectors �12�. These vectors are associated
with Lyapunov exponents and indicate directions of contract-
ing and expanding manifolds at each point of an attractor. If
these vectors are known, angles between each contracting
and each expanding direction can be computed and the mini-
mal one can be found. The attractor is interpreted as nonhy-
perbolic if distribution of these angles does not vanish at the
origin. But in fact, this is only a sufficient condition because
the converse is not true. In the present paper, we apply more
subtle approach based on computation of so-called principal
angles �13� that allows detecting a tangency of two arbitrary
vectors from contracting and expanding subspaces.

The paper is organized as follows. In Sec. I, we introduce
a system and briefly discuss its local dynamics. Also we
describe a numerical method applied to find solutions to the
system. Section II represents linear stability analysis. The
critical length of the system is determined where a spatially
homogeneous solution becomes unstable with respect to non-
uniform perturbation. Section III is devoted to illustrations of
spatiotemporal dynamics. The main part of the paper is Sec.
IV, where we develop the Lyapunov analysis. We discuss*Corresponding author; p.kuptsov@rambler.ru
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distributions of minimal angles between contracting and ex-
panding tangent subspaces on the attractor. Also, dependen-
cies of Lyapunov exponents, Kaplan-Yorke dimension, and
Kolmogorov-Sinai entropy on the length of the system are
considered. In Sec. V, we summarize the obtained results and
outline perspectives for further investigations.

II. MODEL AND NUMERICAL METHOD

Let us start with a physical model, demonstrating hyper-
bolic dynamics, suggested by Kuznetsov in Ref. �3�. The
model consists of two coupled nonautonomous van der Pol
oscillators that are parametrically influenced by an external
periodic force. The oscillators become active turn by turn
and pass the excitation each other in such way that the phase
of oscillations is doubled after each period of the forcing. In
Ref. �6�, the amplitude equations for this system are derived
that read

ȧ = A cos�2�t/T�a − �a�2a − i�b ,

ḃ = − A cos�2�t/T�b − �b�2b − i�a2. �1�

In this paper, we study a spatially extended analog of these
equations, supplying them with the second spatial deriva-
tives.

So, we consider two coupled nonautonomous Ginzburg-
Landau equations

�ta = A cos�2�t/T�a − �a�2a − i�b + �x
2a ,

�tb = − A cos�2�t/T�b − �b�2b − i�a2 + �x
2b . �2�

Here, a�a�x , t� and b�b�x , t� are complex dynamical vari-
ables whose behavior is the subject of interest. Coefficients
at linear terms undergo periodic variation with period T and
amplitude A. The parameter modulation takes place in oppo-
site phase for a and b. When the first subsystem is excited,
the second one is relaxed and vice versa. The forcing is
supposed to be slow, i.e., the half period T /2 is much longer
then a transient time of the excitation. The second terms in
the right-hand parts of the equations provide saturation of
instabilities in the excited subsystems. Additionally, there are
terms responsible for the coupling between a and b; the in-
tensity of the coupling is controlled by �. The coupling is
asymmetric, being quadratic from a to b and linear in the
inverse direction. Finally, the last terms in the right-hand
parts introduce diffusion that is responsible for the spatial
distribution of local oscillations. The diffusion coefficients of
the subsystems are equal to 1. We study the system in a
limited spatial domain 0�x�L. The boundary conditions
are

��xa��x=0,L = ��xb��x=0,L = 0. �3�

Let us briefly discuss a local dynamics of the system.
Consider Eqs. �1�. �A more detailed study can be found in
Ref. �6�.� Due to the presence of the periodic forcing in Eq.
�1�, it is natural to introduce a stroboscopic map: we split the
continuous time into steps of length T and consider a se-

quence of states of the system at the beginnings of these
steps. Define phases within the interval �0,2��: �=arg a,
�=arg b. Suppose at some instant the first oscillator is ex-
cited and its amplitude �a� is high. Then, the second one is
suppressed and its amplitude �b� is small. The coefficients in
Eq. �1� are real except the coupling term. It means that the
phases can vary only as a result of interaction between sub-
systems. But, when a is excited, �b� is small and its action on
a is negligible. Thus, the phase of a remains approximately
constant during the excitation stage. On the contrary, the in-
fluence of the excited a on the suppressed b is strong. The
coupling term is proportional to a2. It means that after the
half period T /2 at the threshold of its own excitation, the
oscillator b inherits a doubled phase of a �also the phase gets
the shift −� /2 because of the imaginary unit at the coupling
term�. Now the roles of subsystems are exchanged. Phase of
b remains constant when this subsystem is excited and at the
end, after the other T /2, the phase is returned back to a
through a linear coupling term �also with the shift −� /2�. As
a result, the first oscillator a doubles its phase during the
period T. This discussion allows to write down a map for a
series of phases �n=arg a�nT� that are measured over the
time step T,

�n+1 = 2�n − � mod 2� . �4�

Up to a constant term �that can be eliminated by a shift of the
origin of the phase�, this map coincides with the well-known
Bernoulli map �14,15�. It demonstrates chaotic dynamics and
the chaos is homogeneous: a rate of exponential divergence
of two close trajectories is identical at each point of the
phase space, being equal to ln 2.

Getting back to the continuous system �1�, we estimate its
largest Lyapunov exponent as

�0 = ln 2/T . �5�

The described mechanism of phase doubling presumes a hy-
perbolic nature of the dynamics of Eq. �1�. The numerical
verification of the cone criterion, which has been preformed
in Ref. �6�, confirms this.

Before starting an analysis of the system �2�, let us dis-
cuss a numerical method applied to find its solutions. For-
mally, our equations can be classified as parabolic partial
differential equation �PDE�. Typical recommendation of
handbooks for such equations is the Crank-Nicolson method
which is absolutely stable and provides the second order of
local approximation both in space and in time. This method
is semi-implicit, i.e., a solution at a new level tk+1 is ex-
pressed via previous solution at tk as a set of algebraic equa-
tions, so that values from all spatial points on both levels are
involved into this equation set. If PDE is linear, these equa-
tions are linear too. But application of this approach to non-
linear PDEs, such as ours, gives rise to a set of nonlinear
algebraic equations that requires much more computational
efforts. Usually, one simplifies the problem by neglecting
terms, being nonlinear with respect to unknown variables.
The resulting numerical scheme is semi-implicit for linear
part of initial PDE and explicit for nonlinear part. Unfortu-
nately, this simplified “quasi-Crank-Nicolson” method is not
absolutely stable. Sometimes everything goes fine, but some-
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times, usually when the system is far beyond the instability
threshold, the solution diverges. In this paper, we do not
neglect the nonlinearity and develop a true semi-implicit
scheme. At each time step, we solve a set of nonlinear equa-
tions via the Newton-Raphson iterations. The seed for the
iterations is found from the mentioned simplified method.
The iterations converge very fast. Normally, it takes two or
three repetitions to solve the nonlinear equations with the
accuracy 10−5 or even better. The idea of the described
method can be found in books on numerical analysis, e.g.,
�16,17�. Though the method is a bit complicated, this is com-
pensated by its high accuracy and stability.

Below, different characteristic values are calculated as
functions of the length of the system L. Varying L, we need
to choose some strategy of simultaneous variation of param-
eters of a numerical mesh. One way is to keep constant num-
ber of points of the mesh N and compute space step as �x
=L / �N−1�. The other way is to fix the step �x and find N for
each L as N=1+ �L /�x�, where � · � means ceiling �to get a
consistent numerical scheme, one also needs to adjust actual
value of �x for the equality �x�N−1�=L to fulfill�. In our
simulations, we always keep constant N. This strategy seems
to be preferable because the number of degrees of freedom of
the numerical model remains constant; obviously, it is equal
to 2N �traditionally defined as a half of a total order of the set
of differential equations�. So, we can be sure that phenom-
ena, observed when L is varied, emerge due to a transforma-
tion of an inner structure of attractor and they cannot be
attributed to just an extensive increase of degrees of freedom.
The time step �t can be either constant or attached to �x.
When �t is sufficiently small, these two ways produce iden-
tical results. We shall hold the time step at �t�0.01. �Addi-
tionally, a small adjustment is also made to fit an integer
number of steps into the observation interval�. Though this is
redundantly small value to obtain solutions to the system �2�,
but this is needed to estimate correctly its minor Lyapunov
exponents.

III. LINEAR STABILITY ANALYSIS

Standard linear stability analysis of autonomous spatially
extended active system requires a consideration of small per-
turbations to a homogeneous steady state. Existence of per-
turbation modes with positive growth rates indicates the in-
stability of the homogeneous state. Our system does not have
a steady state and its dynamics is chaotic in time. Oscilla-
tions can be either homogeneous or irregular in space. Our
aim is to find the conditions for a transition from one regime
to another, utilizing ideas of the standard analysis.

Suppose that the system is infinite in space and its initial
state is uniform. Prepared in this way, the system obviously
demonstrates homogeneous oscillations; at any spatial point,
the dynamics can be described by the ordinary differential
equations �ODE� system �1�. Let us consider an inhomoge-
neous perturbation to these oscillations. We need to seek a
solution composed as a sum of a homogeneous part, say,
a0�t� and b0�t�, and a sinusoidal mode of perturbation with
real wave number k and real growth rate ��k�. The system is
chaotic; thus, instead of usual assumption of time periodicity

of small perturbation, we introduce small amplitudes ã�t� and

b̃�t� and require them neither grow nor decay, in average. It
means that there exist two constants, 0	K	M 	
, such

that K	 �ã�t��	M and K	 �b̃�t��	M for t�0. So, we set

a�x,t� = a0�t� + ã�t�e��k�t−ikx,

b�x,t� = b0�t� + b̃�t�e��k�t−ikx. �6�

After substitution of Eq. �6� to Eq. �2�, we exclude nonlinear

terms in ã and b̃, supposed to be small, and obtain a set of
linear ODE for complex amplitudes of perturbation

ȧ̃ = �A cos�2�t/T� − �0�ã − 2�a0�2ã − a0
2ã� − i�b̃ ,

ḃ̃ = �− A cos�2�t/T� − �0�b̃ − 2�b0�2b̃ − b0
2b̃� − 2i�a0ã ,

�7�

where �0=k2+��k� and asterisks denote the complex conju-
gation. A value of �0 controls growth or decay of a solution.

Because ã�t� and b̃�t� should be bounded at any k, �0 does
not depend on k. One can easily check that Eq. �7� also
describes small perturbation to an orbit of Eq. �1�. It means

that the conditions on ã�t� and b̃�t� are fulfilled when �0 is
equal to the largest Lyapunov exponent of Eq. �1�. Thus, we
can write

��k� = �0 − k2. �8�

Relation �8� can be verified by direct numerical computa-
tions of ��k�. For this purpose, we substitute �0→��k�+k2

to Eq. �7� and set there ��k�=0. It means that now the am-

plitudes ã and b̃ are allowed to grow or decay, so that the rate
will be equal to ��k�. Given k, we find ��k� employing the
algorithm of computing of the largest Lyapunov exponent
�18�. System �7� is initialized with a unit vector and then
solved together with Eq. �1� on one period T. After that, a
norm of the vector solution of Eq. �7� is found and stored and
the vector itself is normalized. When this procedure is re-
peated for a sufficiently long time, averaged logarithms of
the collected norms determine the sought ��k�. The results
are shown in Fig. 1. Solid lines represent theoretical ��k� in
Eq. �8�. The upper one corresponds to a hyperbolic chaos in
Eq. �1� and �0 is found according to Eq. �5�. The lower curve
also corresponds to chaotic oscillations of Eq. �1� that are,
however, nonhyperbolic. In this case, we substitute a com-
puted value of ��0� to Eq. �8� instead of �0. Numerical data
fit well the theoretical curves. As follows from Eqs. �5� and
�8�, ��k� does not depend on A in the regime of hyperbolic
chaos. Numerical verification confirms this.

Linear modes described by Eq. �7� are influenced para-
metrically by a chaotic force. It means that all modes with
positive ��k� can grow simultaneously giving rise spatiotem-
poral chaos. The spectrum of lineally unstable modes with
��k��0 can be found in Eq. �8�. These modes lay within the
interval of wave numbers 0�k	klin, where

klin = ��0. �9�
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If the system �2� is bounded by the length L, the spectrum
of modes allowed by the boundary conditions �3� is

kn = n�/L, n = 1,2,3, . . . . �10�

When L is small, so that k1�klin, there are no unstable eigen-
modes and the system demonstrates homogeneous oscilla-
tions. Spatial structure emerges above the critical point
which can be found from the condition k1=klin: Lc=� /��0.
Below, we put an attention to the case when the local dy-
namics is hyperbolic. The Lyapunov exponent �0 in this case
is given by Eq. �5� and the critical length reads

Lc = ��T/ln 2. �11�

IV. SPATIOTEMPORAL DYNAMICS

Let us consider some illustrations of spatiotemporal dy-
namics of the system �2�. Figure 2 represents homogeneous
oscillations. In this and subsequent figures, the space coordi-
nate is horizontal, time is directed vertically, and gray levels

indicate values of Re a as shown by gradient bars at the right
edges of the diagrams. Layers Re a�x� are plotted at succes-
sive steps tn=nT. Critical length, according to Eq. �11�, is
Lc�8.44. The length of the system in Fig. 2 is less then the
critical value, L=8. Hence, after a short transient time, it
settles in a regime of homogeneous oscillations.

In Fig. 3 the length L=10 is larger than Lc. The first
eigenmode cos�k1x� falls into the instability domain and
grows, destroying the homogeneity. The first mode contains
one half of the period of cosine, so if a maximum is at the
left edge of the system, a minimum appears at the right edge
and vice versa. Careful inspection of Fig. 3 confirms this
conclusion. If a horizontal stripe, representing Re a�x� at a
certain time step, is white at the left edge, it becomes dark at
the right edge.

The result of further increase of the length up to L=500 is
shown in Fig. 4. As here a lot of eigenmodes satisfy the
condition kn	klin, they are exited and produce a rich and
complicated structure. It is interesting to note that it reminds
a structure generated by cellular automata of Wolfram’s class
3 �19�.

V. LYAPUNOV ANALYSIS

Lyapunov exponents are average rates of expansion or
contraction in the tangent space on an attractor. They char-
acterize sensitivity of motion to small perturbations; the at-
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tractor with a positive exponent is chaotic. Also, it is impor-
tant to know a mutual orientation of expanding and
contracting directions in the tangent space at each point of
the attractor. This information can be provided by covariant
Lyapunov vectors �12�. If there is a well-defined split of the
tangent space into contracting and expanding subspaces, the
dynamics is hyperbolic. On the contrary, the dynamics is
nonhyperbolic when couples of collinear vectors from con-
tracting and expanding subspaces can be encountered with a
nonzero probability.

In this section, we compute covariant Lyapunov vectors
and perform a verification of hyperbolicity of the attractor of
Eq. �2�. Also, we analyze Lyapunov exponents for the system
�2� as well as related to them Kaplan-Yorke dimension and
Kolmogorov-Sinai entropy.

A. Verification of hyperbolicity at different lengths
of the system

To verify the hyperbolicity, one needs to analyze expand-
ing and contracting directions in the tangent space on an
attractor. These directions can be found in a form of covari-
ant Lyapunov vectors �12�. The method of computation of
these vectors is briefly described in the Appendix.

When the covariant Lyapunov vectors are computed at
some point of the attractor, the simplest way to verify the
hyperbolicity is to compute angles between each couple of
expanding and contracting vectors and find the smallest one.
Collecting the smallest angles for sufficiently many points,
one obtains a sufficient condition for nonhyperbolicity: the
attractor is nonhyperbolic if zero angle can be encountered
with a nonzero probability. But the converse is not true. The
covariant Lyapunov vectors may not be collinear themselves,
but the loss of hyperbolicity still can take place due to a
tangency of some other couple of vectors from contracting
and expanding subspaces. To take this situation into account,
a more subtle approach should be used.

Let us suppose that at some point of the attractor, we have
ns covariant Lyapunov vectors spanning the contracting tan-
gent subspace S and nu vectors that span the expanding sub-
space U. It is natural to assume that ns�nu. Consider unit
vectors s�S and u�U and find among them a couple s1 and
u1 that produces the largest inner product. Arc cosine of s1

Tu1
is the smallest angle between subspaces, which is denoted as
�1. Then we seek for unit vectors s2 and u2 that again pro-
duce the largest inner product but with additional require-
ment to be orthogonal to s1 and u1, respectively. Arc cosine
of their inner product is denoted as �2. Proceeding with this
procedure, we obtain nu angles

0 � �1 � ¯ � �nu
� �/2, �12�

which are called the principal angles. Corresponding vectors
si and ui are called the principal vectors. The formal defini-
tion of the principal angles and vectors is the following �13�:

cos �k = max
s�S

max
u�U

sTu = sk
Tuk, �13�

where

sTs = uTu = 1,

sTsi = 0, uTui = 0, i = 1, . . . ,k − 1. �14�

The algorithm of computation of the principal angles is dis-
cussed in the Appendix.

The vanishing of the principal angles indicates the tan-
gency between contracting and expanding subspaces and the
violation of hyperbolicity. A necessary and sufficient condi-
tion for the loss of hyperbolicity is the appearance on the
attractor of such a distribution of �1 that has a nonzero value
at the origin. If a system has many degrees of freedom, sev-
eral smallest principal angles can vanish simultaneously,
which means that several couples of contracting and expand-
ing vectors merge. A number of such angles defines the di-
mension of the tangency. A necessary and sufficient condi-
tion for the n-dimensional tangencies is a nonzero
probability of vanish of the sum of first n principal angles.

Figure 5 represents distributions of �1 for the system �2�
at different lengths L. The equations have been solved at
�t�0.01 and �x=L / �N−1�, where N is the number of
points of a numerical mesh. N=51 for all L, except L=60
where N=101. The distributions have been computed with
the resolution 300 points. For each distribution, ten trajecto-
ries of the length 600T have been processed with the interval
T /30 between renormalizations and orthogonalizations �see
the Appendix for details�. In the course of the backward it-
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FIG. 5. Distributions of minimal angles �1 between contracting
and expanding tangent subspaces of the attractor of Eq. �2�. A=3,
T=5, and �=0.05. The logarithmic scale is used along the ordinate
axis. Dashed lines in the panels L=17 and L=30 are obtained via
least-squares fit. There is one positive Lyapunov exponent at L=8,
two at L=10 and L=15, three at L=17, five at L=30, and 11 at L
=60. Observe the violation of hyperbolicity at L�15, i.e., when the
third Lyapunov exponent becomes positive.
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erations, a time interval 500T is omitted as transient and then
the angles are computed on the interval 100T. Thus, totally,
3000 angles for each trajectory have been stored. The distri-
butions have been normalized, 	0

�/2P��1�=1.
The upper curve L=8 in Fig. 5 corresponds to a spatially

homogeneous case. The angles are very well localized. Thus,
the hyperbolic dynamics is observed that corresponds to the
hyperbolic dynamics of the ODE system �1�. The second
curve L=10 represents the case of a weak inhomogeneity
when the system is not far above the critical point Lc. Ob-
serve that the distribution becomes much smoother compared
to the homogeneous case. It means that different configura-
tions of contracting and expanding subspaces are encoun-
tered with almost equal probabilities. The distribution is still
separated well from the origin, i.e., the attractor remains hy-
perbolic. This is also the case for the next distribution at L
=15. This distribution is even flatter than the previous one
and also it is separated well from the origin. Notice that there
are two positive Lyapunov exponents both at L=10 and at
L=15. The picture becomes dramatically different at L=17
when the third Lyapunov exponent becomes positive. The
distribution occupies almost the whole range of angles and
has nonzero value at origin. The former indicates that the
attractor becomes nonhyperbolic. Moreover, notice that in
the logarithmic scale, the curve decays linearly from the ori-
gin. It means that the most part of the distribution is de-
scribed by an exponential function. Similar behavior is ob-
served at L=30: the most part of the curve obeys the
exponential law. The exponents, which are equal to the
slopes of the dashed approximating lines, are −0.72 at L
=17 and −1.81 at L=30, i.e., their absolute values grow with
L. When L gets larger, as in the panel for L=60, the distri-
bution undergoes a transformation. It acquires an extended
sloping segment near the origin, while the other part of the
distribution becomes more or less flat, on average. The at-
tractor remains nonhyperbolic and, moreover, the probability
to encounter the tangency of contracting and expanding sub-
spaces becomes larger.

We can assume that the reorganization of the structure of
distribution, which occurs between L=30 and L=60, is asso-
ciated with emergence of the two-dimensional tangencies of
contracting and expanding subspaces. Figure 6 demonstrates
distributions of two first principal angles ��1+�2� /2. The
curve at L=17 is separated well from the origin, so that no
two-dimensional tangencies take place. At L=30, the curve
approaches zero much closer. Finally, the curve at L=60
touches the ordinate axis, confirming the presence of the
two-dimensional tangencies.

Figure 7 reproduces the observed scenario at some other
set of parameters. In panel �a�, we can see that the attractor is
hyperbolic with two positive Lyapunov exponents, curve L
=10, while emergence of the third one results in the violation
of the hyperbolicity, curve L=11. Similar to the case pre-
sented in Fig. 5, the distribution right above the violation
point is basically exponential, curve L=11, while the further
growth of L results in the transformation of the distribution,
curve L=60. Figure 7�b� indicates the emergence of the two-
dimensional tangencies in this case: the distributions of ��1
+�2� /2 approach the origin as L grows and touch it at L
=60.

So we observe that the growth of L first results in the
violation of hyperbolicity due to one-dimensional tangencies
of contracting and expanding subspaces and then gives rise
to two-dimensional tangencies between these subspaces. It is
natural to suggest that the tangencies of higher dimensions
also arise at appropriate lengths of the system. The violation
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FIG. 6. Distributions of two principal angles ��1+�2� /2. Ob-
serve how curves approach the origin and touch it at L=60, which
indicates the two-dimensional tangencies between contracting and
expanding subspaces. The parameters are as in Fig. 5.
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FIG. 7. Distributions of �1 and ��1+�2� /2, panels �a� and �b�,
respectively, at A=8, T=2, and �=0.05. There are two positive
Lyapunov exponents at L=10, three at L=11, and 16 at L=60.
Observe the violation of hyperbolicity at L=11 in the �a� and the
emergence of two-dimensional tangencies at L=60 in �b�.
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of hyperbolicity is accompanied by the emergence of the
third positive Lyapunov exponent. Let us denote the point
where the third Lyapunov exponent passes zero as L2. We
suspect that the loss of hyperbolicity takes place exactly at
L=L2 and below, additional evidences of this assertion are
presented.

B. Lyapunov exponents against the length of the system

Figure 8 represents the Lyapunov exponents �i as func-
tions of L. The plots are obtained at N=51 points of the
spatial mesh, �x=L / �N−1� and �t�0.01. The interval be-
tween renormalizations and orthogonalizations is T /30 �see
the Appendix for details�. Notice that the zero exponent is
absent. This is natural for the nonautonomous system we
deal with.

The largest exponent �0 remains almost constant as L var-
ies �see the lower panel in Fig. 8�. The approximating line,
obtained via least-squares fit, does not have a noticeable
slope �the slope is of the order 10−5� and is plotted at con-
stant value 0.138. This is equal with a remarkable accuracy
to the theoretically predicted largest Lyapunov exponent �5�
of the corresponding ODE system �1�. When L is small, the
system has the single positive exponent that corresponds to
spatially homogeneous chaotic oscillations. As L grows, the
second exponent �1 becomes positive at L=Lc. This indicates
the transition to a spatially inhomogeneous solution. Further
increase of L results in a cascade of passing through zero of
the exponents.

Figure 9�a� shows lengths Ln where corresponding
Lyapunov exponents �n vanish. Two lines correspond to two

sets of parameters of the system. One can see that Ln depends
linearly on n. It means that the number of positive exponents
also linearly, on average, grows with L. In Fig. 9�b�, the
intervals �Ln=Ln−Ln−1 are plotted ��L1�Lc�. Notice that
�L2��L1 and these two values are larger then the others
�Ln. We attribute this to the transition to a nonhyperbolic
attractor that takes place at L2.

C. Kaplan-Yorke dimension and Kolmogorov-Sinai entropy

Figure 10 illustrates the Kaplan-Yorke or Lyapunov di-
mension DKY �14,15� and the sum of positive Lyapunov ex-
ponents h
, which is an upper estimate for the Kolmogorov-
Sinai or metric entropy �14,15�. Two panels are obtained for
different sets of parameters. Vertical dashed lines mark the
point Lc of transition to the spatially inhomogeneous attrac-
tor and the point L2, where the third Lyapunov exponent
passes zero so that the attractor becomes nonhyperbolic.

Let us consider h
 in more details. It is known that for a
hyperbolic attractor, h
 is equal to its Kolmogorov-Sinai en-
tropy, while for a generic chaotic attractor this is an upper
estimate for the entropy �15�. Because our system is hyper-
bolic at L	L2, we can use h
 to construct a function which
approximates the entropy at least on this interval. Below Lc,
we have h
=�0, while above this point, h
 demonstrates a
power-law behavior. Thus, employing the least-squares fit,
we obtain a function, approximating h
 as

�
�L� = 
�0 L � Lc

��L − Lc�� + �0 L � Lc,
� �15�

where �=0.083 and �=0.25 for Fig. 10�a� and �=0.229 and
�=0.26 for Fig. 10�b�. The indices � computed for different
parameter sets are, perhaps, identical �small difference can
be attributed to errors of computations�.
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FIG. 8. Ten largest Lyapunov exponents of the system �2�
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�8.44 and L2�15.9 �the point where �2=0�. Lower panel repre-
sents �0 in a large scale. Dashed approximating line, 4�10−5L
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The power-law approximation �15� agrees very well with
the numerical curve h
 at L	L2 and at L=L2, a bifurcation
occurs that is associated with the loss of hyperbolicity. There
are two possibilities above this point. The first one is that the
Eq. �15� still gives correct value of the entropy, while h


serves as an upper estimate. The other possibility is that h


correctly represents the entropy, while the approximation
�15�� becomes inappropriate. Anyway, both of these variants
fit well with our conclusion that the system loses the hyper-
bolicity at L=L2.

Above L2, the entropy h
 grows linearly with the length
as well as the dimension. A number of positive Lyapunov
exponents also demonstrates a linear growth as follows from
the linear growth of Ln in Fig. 9�a�. This is a typical phenom-
enon for extensive fully developed chaos in extended sys-
tems. In particular, the linear growths of DKY�L� and h
�L�
were reported for coupled map lattices �20�, for Kuramoto-
Sivashinsky �KS� equation �21�, and for complex Ginzburg-
Landau �CGL� equation �22�. Also, the linear growth of DKY
was demonstrated for a chaotic attractor of coupled
Ginzburg-Landau equations �23�. It can be explained by ex-
ponential decay of spatial correlations. Two points with
space separation larger than the correlation length move in-
dependently, so that the system can be roughly represented
by a direct product of independent subsystems �20�. Thus,
the additivity is observed: the growth of L merely results in
the proportional increase of the characteristic values.

D. Spectra of Lyapunov exponents

Figure 11�a� demonstrates spectra of Lyapunov exponents
at different L. The first curve L=8 corresponds to a spatially
homogeneous case when oscillations in all spatial points are
synchronized and can be described by Eq. �1�. There is one
positive Lyapunov exponent. As one can see from the figure,
the minor negative exponents have very large absolute val-
ues. It means that only a few spatial modes are actually in-
volved in the dynamics, while the most of modes are highly
damped. When L grows, more Lyapunov exponents become
positive and the remaining negative exponents approach the
axis of abscissas so that their absolute values become
smaller. In the other words, more spatial modes participate in
the dynamics. The separation of modes involved and not
involved in the observable dynamics is studied in Ref. �24�.
For a dissipative chaotic system, it is shown to exists a split-
ting of the tangent space into physical modes, responsible for
the observable dynamics, and hyperbolically isolated from
them highly damped nonphysical modes that do not bring an
essential information about the dynamics.

For a fully developed spatiotemporal chaos, a Lyapunov
spectrum scaled as �DKY /h
���n /DKY� is known to tend to a
limiting curve at L→
. In particular, this was reported for
coupled map lattice �20�, for KS equation �21�, and for CGL
equation �22�. Figures 11�b� and 11�c� represent the verifica-
tion of this property for the system �2� at two sets of param-
eters. One can see high correspondence of curves obtained at
different L.
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VI. SUMMARY AND CONCLUSION

We considered an extended system whose local dynamics
is hyperbolic and spatial coupling is introduced via diffusion.
A numerical verification of hyperbolicity of the attractor of
this system was performed. The test was based on the com-
putation of distributions of principal angles between con-
tracting and expanding tangent subspaces of the attractor.
The analysis revealed that the hyperbolicity is inherent only
to a low-dimensional chaos observed at sufficiently small
lengths of the system.

The dynamics is obviously hyperbolic when oscillations
are homogeneous in space because each spatial cell merely
reproduces the oscillations of a partial ODE system that is
known to be hyperbolic. This regime is characterized by a
single positive Lyapunov exponent. The hyperbolicity sur-
vives when the length gets larger, so that the first spatial
mode allowed by boundary conditions becomes linearly un-
stable and the oscillations become inhomogeneous. This
transition is accompanied by the emergence of the second
positive Lyapunov exponent. Further growth of the length
results in the emergence of the third positive Lyapunov ex-
ponent. In this point, the violation of hyperbolicity takes
place.

Beyond the point of the hyperbolicity loss, the system
demonstrates an extensive spatiotemporal chaos that is char-
acterized by a fast decay of a spatial correlation. We verified
several standard criteria and observed behavior that is typical
for many other extended chaotic systems. Namely, the num-
ber of positive Lyapunov exponents, the sum of positive ex-
ponents �this value is an upper estimate for Kolmogorov-
Sinai entropy�, and the Kaplan-Yorke dimension grow
linearly against the length of the system. Spectrum of the
Lyapunov exponents, being properly rescaled, tends to a lim-
iting curve as the length grows.

So, if the length of the system grows and the third
Lyapunov exponent becomes positive, we register the viola-
tion of hyperbolicity due to the emergence of one-
dimensional intersections of contracting and expanding tan-
gent subspaces of the attractor. If the length continues to
increase, along with one-dimensional intersections, we ob-
serve two-dimensional ones. This is a stronger type of the
hyperbolicity violation because there is higher probability for
the perturbation to be transferred between contracting and
expanding subspaces. We expect that the intersections of
higher dimensions also take place as the length diverges. It is
interesting to study the violation of hyperbolicity in the ther-
modynamic limit. If the number of modes involved in the
dynamics is infinite, the maximal dimension of the intersec-
tions may be infinite too or it can have a finite value. The
first case can be termed as a strong violation because the
capacity of set of the merging vectors from contracting and
expanding subspaces is comparable with the capacity of the
whole set of degrees of freedom. Hence, the probability for
the perturbation to be transferred between contracting and
expanding subspaces is nonzero. The second case can be
termed as a weak violation. Though the intersections take
place, the number of merging directions per degree of free-
dom is zero. Thus, the probability of the perturbation transfer
vanishes.
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APPENDIX: COMPUTATION OF LYAPUNOV EXPONENTS,
COVARIANT LYAPUNOV VECTORS, AND ANGLES

BETWEEN SUBSPACES

To compute Lyapunov exponents, we apply an algorithm
based on the QR decomposition. See Refs. �25–27� for the
details of the algorithm and Ref. �13� for an idea of the QR
decomposition.

First of all, equations for small perturbations ã�x , t� and

b̃�x , t� to trajectories a�x , t� and b�x , t� of Eq. �2� are required

�tã = A cos�2�t/T�ã − 2�a�2ã − a2ã� − i�b̃ + �x
2ã ,

�tb̃ = − A cos�2�t/T�b̃ − 2�b�2b̃ − b2b̃� − 2i�aã + �x
2b̃ ,

�A1�

where asterisks denote the complex conjugation. To compute
M� Lyapunov exponents, we need M� exemplars of the lin-
ear equation sets �A1�, which are initialized by an orthogonal
set of random unit vectors of the length 4N, where N is the
number of points of a numerical mesh. Basic system �2� is
also initialized and advanced along a trajectory for a suffi-
ciently long time to arrive at the attractor. Then, the basic
system is solved simultaneously with M� linear equation sets
during some time interval. The more Lyapunov exponents
are required, the shorter interval should be taken because
minor negative Lyapunov exponents can have very large ab-
solute values so that the corresponding solutions of linear
subsystems decay very fast. M� resulting vectors are then
considered as columns of a matrix that is decomposed into
an orthogonal matrix Q and an upper triangular matrix R.
�An algorithm based on the Householder rotation is used
�13�.� Logarithms of M� diagonal elements of the R are col-
lected, while M� columns of the Q are used to reinitialize
linear systems. Then this procedure is repeated. Averaged
logarithms of diagonal elements of R converge to Lyapunov
exponents.

To compute covariant Lyapunov vectors according to the
method recently reported in Ref. �12�, we must do the similar
things. After initialization of the equations, we make several
steps n0 accompanied by the QR procedure, but without stor-
ing elements of R, to obtain a good matrix Qn0

. “A good”
means that each linear subspace Sn0

j , j=1,2 , . . .4N, spanned
by first j vector columns of Qn0

, contains jth expanding �or
contracting� direction of the tangent space at n0. Starting
from n0, we make some more steps and arrive at n1. Here we
have a matrix Qn1

with columns that determine subspaces
Sn1

j . Our aim now is to define arbitrary unit vectors belonging
to these subspaces, un1

j �Sn1

j , j=1,2 . . .4N. In fact, we just
need to generate a random upper triangular matrix Cn1

,
whose size coincides with R and columns are normalized by
1. jth column of Cn1

contains coordinates of un1

j with respect
to the basis Qn1

. In other words,
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Un = QnCn, �A2�

where Un= �un
1 ,un

2 , . . . ,un
4N
. Starting from Cn1

, we perform
backward iterations Cn−1=Rn

−1Cn accompanied by renormal-
ization of columns of Cn. Collecting and averaging the nega-
tive logarithms of the norms, we obtain Lyapunov exponents.
Under these iterations the, vectors un

j , represented by col-
umns of the Cn, are aligned with the most expanding direc-
tions of subspaces Sn

j . These directions are associated with
corresponding Lyapunov exponents. Because we go back in
time, the highest Lyapunov exponents do not dominate this
alignment. If the number of steps from n1 to n0 is sufficiently
large, getting back at n0, we obtain the matrix Cn0

with co-
ordinates of covariant Lyapunov vectors Un0

, pointing ex-
panding and contracting directions of the tangent space at n0.
Explicit form of Un0

can be found from Eq. �A2�. Computed
in parallel, the Lyapunov exponents allow to distinguish ex-
panding and contracting directions.

In practice, computing the covariant Lyapunov vectors for
a system of many degrees of freedom, we must deal with
very large arrays of data. For the backward procedure to be
performed, m=n1−n0 matrices R should be stored. The time
interval between successive QR decompositions should be
sufficiently small to treat minor Lyapunov exponents and
corresponding vectors accurately, while the duration of the
backward procedure must be long because the vectors are
found to converge sufficiently slow. As a result, an array of
matrices R runs up to several gigabytes. We recall that on
32-bit platforms, the physical limit of an addressable
memory is 4 Gb, while the memory actually available for
programs is even less. It means that we cannot store such
array in memory and need to write it to a file. �Otherwise,
one can employ a 64-bit platform with appropriate amount of
memory, of course.� Moreover, the file must be written in a
binary format. The usual text format is not a saving so that
an extremely large file can be obtained.

According to Eq. �A2�, we need Qn0
to restore covariant

Lyapunov vectors in the original phase space. It means that

an array of m matrices Q must also be stored. Hopefully, this
is not needed. The transformation �A2� preserves angles be-
cause matrices Qn are orthogonal. Thus, we do not need the
Un to analyze the structure of the tangent space. Identical
information about this space can be extracted directly from
the column space of Cn.

To compute the Cn, we apply a two-pass procedure. First,
we solve the equations and perform QR decompositions dur-
ing a sufficiently long time, saving obtained matrices Rn to a
file. Then, on the second pass, we generate random matrix
Cn1

�see the details above� and perform the backward itera-
tions, reading Rn from the file from the end to the beginning.
When a sufficiently large number of transient iterations are
made, we start to compute angles between contracting and
expanding subspaces of the column space of Cn until we
arrive at the beginning of the file of Rn.

The algorithm of computation of the angles between sub-
spaces, the so-called principal angles, can be found, e.g., in
Refs. �13,28�. Consider a matrix Cn. First of all, its columns
must be classified as vectors associated with contracting and
expanding directions of the tangent space, according to signs
of corresponding Lyapunov exponents. Thus we obtain a ma-
trix S comprising of ns covariant Lyapunov vectors from the
contracting subspace and a matrix U that consists of nu vec-
tors of the expanding subspace. It is natural to assume that
ns�nu. For both of these matrices, we compute the QR
factorizations S=QsRs, U=QuRu, and then compose the ma-
trix M,

M = Qs
TQu. �A3�

Cosines of the sought principal angles �i, �i=1, . . . ,nu� are
equal to the singular values of the M, which can be easily
computed �see, e.g., �13,29��.

This algorithm is known to fail to accurately compute
very small angles and in Ref. �28�, an improved version is
suggested. But, nevertheless, we use the standard algorithm
because the extremely high accuracy is not needed for our
purposes.
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